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Abstract

A novel time series analysis is presented to locate damage sources in a
mechanical system, which is running in various operational environments.
The source of damage is located by solely analyzing the acceleration time
histories recorded from a structure of interest. First, a data normalization
procedure is proposed. This procedure selects a reference signal that is
‘closest’ to a newly obtained signal from an ensemble of signals recorded
when the structure is undamaged. Second, a two-stage prediction model
(combining auto-regressive (AR) and auto-regressive with eXogenous
inputs (ARX) techniques) is constructed from the selected reference signal.
Then, the residual error, which is the difference between the actual
acceleration measurement for the new signal and the prediction obtained
from the AR—ARX model developed from the reference signal, is defined as
the damage-sensitive feature. This approach is based on the premise that if
there were damage in the structure, the prediction model previously
identified using the undamaged time history would not be able to reproduce
the newly obtained time series measured from the damaged structure.
Furthermore, the increase in residual errors would be maximized at the
sensors instrumented near the actual damage locations. The applicability of
this approach is demonstrated using acceleration time histories obtained
from an eight degrees-of-freedom mass—spring system.

(Some figures in this article are in colour only in the electronic versionygeeiop . org)

1. Introduction environments. After extreme events, such as earthquakes
or blast loading, SHM is used for rapid condition screening
The process of implementing a damage detection strategyyd aims to provide, in near real time, reliable information
for aerospace, civil and mechanical engineering infrastructuegarding the integrity of the structure. A recent collapse
is referred to as structural health monitoring (SHM). Heref a pedestrian walkway bridge in North Carolina, USA
damage is defined as changes to the material and/or geoméritp://www.cnn.com/2000/US/05/21/walkway.collapse) has
properties of these systems, including changes to the bound@geived a tremendous amount of media attention, emphasizing
conditions and system connectivity, which adversely affethe importance of the health and condition monitoring for such
the system’s performance. The SHM process involvedructures. Furthermore, major advances in sensor technology
the observation of a system over time using periodicalgnd wireless data transmission are making the development of
sampled dynamic response measurements from an arséigh a monitoring system economically feasible.
of sensors, the extraction of damage-sensitive features Based on the work of Rytter (1993), the authors
from these measurements, and the statistical analysiscafegorize the structural health monitoring process into five
these features to determine the current state of syststages: (1) identification of damage presence in a structure,
health. For long-term SHM, the output of this process i) localization of damage, (3) identification of the damage
periodically updated information regarding the ability of théype, (4) quantification of damage severity, and (5) prediction
structure to perform its intended function in light of theof the remaining service life of the structure. Doeblwigal
inevitable aging and degradation resulting from operationél998) present a recent thorough review of the vibration-based
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Table 1. Specifications for data acquisition.

Time step 0.001953 s
Sampling rate 512 Hz
Time period 8s

Frequency resolution 0.125 Hz
Number of data points 4096

Filtering Uniform window
Nyquist frequency 256 Hz

figure 1. Each mass is an aluminum disk 25.4 mm thick and
76.2 mmin diameter with a central hole. The hole is lined with
a Teflon bush. There are small steel collars on each end of the
disks (figure 2). The masses all slide on a highly polished steel
rod that supports the masses and constrains them to translate
only along the rod. The masses are fastened together with coll
springs epoxied to the collars that are, in turn, bolted to the
Figure 1. 8 DOF system attached to a shaker with accelerometersnasses.
mounted on each mass. The DOF, springs and masses are numbered from the right-
hand end of the system, where the excitation is applied, to the
damage identification methods. While the references citedl@ft-hand end, as shown in figure 1. The nominal value of
this review propose many different methods for identifying anahass 1 (m1) is 559.3 g. Again, this mass is located at the
localizing damage from vibration response measurements, tight-hand end where the shaker is attached. m1 is greater
majority of the cited references rely on finite element modeliri§an the others because of the hardware needed to attach the
processes and/or linear modal properties for damage diagnoshgiker. All the other masses (m2-m8) are 419.4 g. The
For practical applications these methods have not been sh@pfing constant for all the springs is 36kN m™* for the
to be effective in detecting damage at an early state. To avéidfial condition. Damping in the system is caused primarily
the shortcomings of the methods summarized in this reviefy Coulomb friction. Every effort is made to minimize the
the authors have been tackling the damage detection probldffgion through careful alignment of the masses and springs.
based exclusively on the statistical analysis of time series. Acommon commercial lubricantis applied between the Teflon
The authors pose the SHM process in the context B¥shes and the supportrod. S
a statistical pattern recognition paradigm. This paradigm Measurements made during damage identification tests
can be described as a four-part process: (1) operatiod§® the excitation force applied to ml gnd the accelerqtlon
evaluation, (2) data acquisition and cleansing, (3) featuf@SPOnse of all masses. Random eXC|tat|_on was accpmphshed
extraction and data reduction, and (4) statistical mod@jth @ 215 N peak force electro-dynamic shaker (figure 1).
development. In particular, this paper focuses on parts '€ root mean square (RMS) amplitude level of the input

and 4 of the process. A more detailed discussion of 1S varield fr%"; 3 Lo TV A He_vylett-l;alckard 3566A system
statistical pattern recognition paradigm can be found in Fart§p'S employed for data acquisition. ) aptop ComP“‘eT was
et al (2000). It should be noted that neither sophisticate%SEd for data storage and for controlling the data acquisition

finite element models nor the traditional modal paramete0 35338 -Ir—:\? fﬁﬁe ;rr? g iﬂiﬁiﬁ;@?ﬁ;&g ohn;gaall Sn%nrﬁlitrll\glty
are employed in the implementation of the proposed paradi%m : '

A . - . ?tnsitivity of 10 mV g'. The specifications for the data
because they often require labor intensive tuning and result ™. .. . .
a&qwsmon are summarized in table 1.

in significant uncertainties caused by user interaction an The undamaged configuration of the system is the state

mod.eling errors. The approach presgnteq here is soIeI.y baf?'oerdvvhich all springs are identical and have a linear spring
on signal analysis of the measured vibration data, making tlglg

. stant. Nonlinear damage is defined as an occurrence of
approach very attractive for the development of an automa ‘ﬁqgact between two adjacent masses. Damage is simulated
health monitoring system. This signal-only-based paradig

lacing a bumper between two adjacent masses so that
has been applied to the damage identification problem P g P J

g e movement of one mass is limited relative to the other
the authors (Sohet al 2000, Fugateet al 2000). In this a5 Figure 2 shows the hardware used to simulate nonlinear

paper, the paradigm is extended to second level damaggnage. When one end of a bumper, which is placed on one
diagnosis, damage localization problems. The applicabiliffass hitsthe other mass, impactoccurs. Thisimpactsimulates
of the proposed approach is investigated using a simple €ighiinage caused by the impact from the closing of a crack during
degrees of freedom (8 DOF) mass—spring system tested ijjration. The degree of damage can be controlled by changing

laboratory environment. the amount of relative motion permitted before contact, and
changing the hardness of the bumpers on the impactors. For
2. Test structure all damage cases presented, the initial clearance is set to zero.

An 8 DOF system has been designed and constructed to stgdy\nalysis procedure

the effectiveness of the proposed localization procedure. The

system is formed with eight translating masses connectedWhen one attempts to apply the statistical pattern recognition
springs. The system employed in this study is shown paradigm for SHM to data from real-world structures,
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it quickly becomes apparent that the ability to normalize datdere the new segmentr) has the same length as the signal
in an effort to account for operational and environmental(z):
variability is a key implementation issue when addressing P )
parts 2—4 of this paradigm. For SHM strategies that rely y() = Z‘bﬂy(f —J) e ). @)
on vibration response measurements, the ability to normalize /=1
the measured data with respect to varying operational ahbden, the signal segment(r) ‘closest’ to the new signal
environmental conditions is essential if one is to avoidlock y(¢) is defined as the one that minimizes the following
false-positive indication of damage. Examples of commadtifference of AR coefficients:
normalization procedure include normalizing the response »
measuremen?s by the measured inputs as is commonly done Difference— Z(¢X1 _ ¢vj)2- (4)
when extracting modal parameters. When environmental o ’
cycles influence the measured data, a temporal normalization
scheme may be employed. These strategies for SHM daiais ‘data normalization’ is a procedure to select the previously
normalization fall into two general classes: (1) those employeecorded time signal from the reference database, which is
when measures of the varying environmental and operationi@torded under operational and/or environmental conditions
parameters are available and (2) those employed when sglgsest to that of the newly obtained signal. If the new
measures are not available. A primary focus of this study is $ignal block is obtained from an operational condition close
develop a data normalization procedure that can be employedne of the reference signal segments and there has been no
for case 2 when measures of the varying environmental agiguctural deterioration or damage to the system, the dynamic
operational conditions are not available. characteristics (in this case, the AR coefficients) of the new
The data normalization procedure begins by assumii@nal should be similar or ‘closest’ to those of the reference
that a ‘pool’ of signals are acquired from various unknowaignal based on the Euclidean distance measure in equation (4).
operational and environmental conditions, but from a known When a time prediction model is constructed from the
structural condition of the system. The ability of this procedurgelected reference signal, this prediction model should be able
to normalize the data will be directly dependent on this pot® appropriately predict the new signal if the new signal is
being representative of data measured in as many varyiapse’ to the reference signal. On the other hand, if the
environmental and operational conditions as possible. In thew signal was recorded under a structural condition different
example reported herein, multiple time series are record&@m the conditions where reference signals were obtained,
from the undamaged structure (the known structural conditiothie prediction model estimated from even the ‘closest’ signal
at different input force levels (various operational conditionsiy the reference database would not reproduce the new signal
The collection of these time series is called ‘the referendeell.
database’ in this study. For the construction of a two-stage prediction model
A two-stage prediction model, combining an autoproposed in this study, it is assumed that the error between
regressive (AR) model and an auto-regressive model withe measurement and the prediction obtained by the AR model
eXogenous inputs (ARX), is employed to compute the damagdex () in equation (2)) is mainly caused by the unknown
sensitive feature. In this case the damage-sensitive featur@jternal input. Based on this assumption, an ARX model is
the residual error between the prediction model and measuf#tployed to reconstruct the input/output relationship between

J

time series. e, (t) andx(¢):
First, all time signals are standardized prior to fitting an . ,
AR model such that () =Y wx =i+ Y Biedt = e (©)
_ i=1 j=1
o XM )
Ox wheree, (¢) is the residual error after fitting the ARX(b)

wheres is the standardized signal apd ando, are the mean Medel to thee,(r) and x(r) pair. Our feature for damage

and standard deviation of respectively. This standardizationdi2gnosis will later be related to this quantity(r). Note that

procedure is applied to all signals employed in this stud&?is AR-ARX modeling is_similar _to a linear approximation
(However, for simplicity,x is used to denoté hereafter.) method of an auto-regressive moving-average (ARMA) model

For each time series(¢) in the reference database, an AI:presented in Ljung 1987 and references therein. Ljung (1987)

model withp AR terms is constructed. An AR} model can suggested kee_pmg the_sum_coandb smaller tharp (a +b <
be written as (Boxet al 1994) p). ARX(5,5) is used in this example. Althoggh _thear_1d_
b values of the ARX model are set rather arbitrarily, similar
P results are obtained for different combinations ahdb values
x(t) = Z Gujx(t — J) tex(t). (2) aslong as the sum afandb is kept smaller thamp.
j=1 Next, it is investigated how well this ARX(b)
This step is repeated for all signals in the reference databa@Odel estimated in equation (5) reproduces the input/output

The AR order is set to be 30 based on a partial auto-correlatiE)eEa“()nShIp O, (1) andy(®):

analysis described in Boet al (1994). 9 b
Employing a new segmentr) obtained from an unknown ey(t) = y(t) — Zo‘iy(t —i) — Zﬂjey(t —j) (6)
structural condition of the system, repeat the previous step. i=1 j=0
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wheree, (¢) is considered to be an approximation of the syste
input estimated from equation (3). Again, note that she
andp; coefficients are associated witkv) and obtained from
equation (5). Therefore, if the ARX model obtained from the
reference signal block pair(s) ande,(t) were not a good
representation of the newly obtained signal segmentygajr
ande, (), there would be a significant change in the standar
deviation of the residual errar, (), compared to that of, ().
In particular, the standard deviation ratio of the residual error:
o(gy)/o(ey), is expected to reach its maximum value nea
the actual damage sources revealing the location of damay e T
Therefore, the standard deviation ratio of the ‘similar’ signals__
o (gy)/o (), is defined as the damage-sensitive feature and t
increase of this ratio is monitored to detect system anomalie
First, a statistical model is developed based on th
normality assumption of underlying distributiongs,) and
o (ey). The primary objective is to test the null hypothesis, Figure 2. A typical bumper used to simulate nonlinear damage.
Hy: o0?(e,) = o?(e,) against the one-sided alternativa:
o2(ey) < 02(ey). ngeaz(ex) ando?(e,) are the vanances .ompytation of the moments in equation (11). Note that when
of e, andey, respectively. It can be shown that the following, ;) and, (1) are normal distributions with the same variance,

sample variance ratio equation (9) becomes identical to equation (8) sinee3 and
2 d=1.
F = nggy; @) Various studies based on Monte Carlo simulation (Miller
o2(g,

1997 and references therein) have demonstrated that this
has anF-distribution withn, — 1 andn, — 1 DOF under the Box—Andersen test maintains reasonably correct significance
null hypothesigHo (Miller 1997). n, andn, are the numbers of levels under the null hypothesis for a variety of heavy- and
samp|es oﬁx (t) andgv(l‘), respective|y_ The null hypothesisshort-tailed distributions. This method also has been shown to
Hy is rejected when th&-statistic in equation (7) exceeds thé>e superior to most of other competitive tests. This modified

upper 100x « percentile of theF-distribution: hypothesis test is employed to check if the new signal has

significantly changed from the closest signal selected from the
o(ey) reference database.

o2(z,) > Frfifl,nxfl' (8)

When the sample distribution departs from the normgr L aboratory test result: an 8-DOF mass-spring
distribution, the actual significance level in equation (8) cay

be considerably different from the normally stated level. F(Ilfor the localization study of nonlinear damage, three different

a heavy-tailed distribution the probability of rejection unde&amage scenarios are studied varying damage locations and

Hy greatly exceeds, and for a short-tailed distribution theinput force levels. To simulate nonlinear damage, a bumper is

probability is considerably less than %5

- aced between two masses as shown in figure 2. This bumper
Based on permutation theory, Box and Andersen (195| installed between m1-m2, m5-m6, and m7—m8 for damage

modified equation (8) to safely use it in more general
gg?(“(ﬁ:ggrsse\r':"ggf tthz s;mglgﬁsti:s?:?gr;o:}e d Ir_:_hit: ftime histories are recorded atanindividual inputlevel and the
statistic is however, compared with a different EriticalI point o put force varies frm 3Vio4,S, 6.’ and 7V tecept damage
theF—distr,ibution Wi,thn* ~ 1 andn* — 1 degrees of freedom: ase 3, where the mputvol_tage varies from4to 7V). Therefore,
¥ x " a total of 25, 25, and 20 time series are recorded for damage
2 cases 1, 2, and 3, respectively. For the undamaged case, 15
04(gy) o ] . . . .
5 > P g (9) sets of time histories are recorded at an individual input level,
o%(ex) P producing a total of 75 time series. To construct the reference
where database, which represent various operation conditions of the
system, nine sets of time series obtained from an individual
ny—1l=dn,—1 ny—1l=dmn, -1 input level and the input level again varies from 3 to 7 V.
Therefore, 45 time series out of 75 time histories are used
de [1 . }(b _ 3)}‘1 (10) to construct the reference database. Table 2 summarizes the
- 2 time series studied in this example.
Table 3 presents the standard deviation ratie, ) /o (&),
(n: +n,)(Y ej}(r) +3 8;10)) for each DOF and all damage cases. ¥ite,)/o (¢,) values
b= 5 5 . (11) shown in table 3 are the mean values of 75, 25, 25, and 20
Qo ef@) +Z£y(’)) sample standard deviation ratios for damage cases 0, 1, 2,
Hereitis assumedthat(r) ands, (¢) are zero-mean processesand 3, respectively. If a bumper were introduced at m1, the
Otherwise, their mean values should be subtracted before lakgest increase in the residual error standard deviation would

ases 1, 2, and 3, respectively. For each damage case, five sets

and
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Table 2. List of time series employed in this study.

Case Description Input level (V) Data sets per input  Total data sets
0 No bumper 3,4,5,6,7 15 75

1 Bumper between m1-m2  3,4,5,6,7 5 25

2 Bumper between m5-m6é  3,4,5,6,7 5 25

3 Bumper between m7-m8 4,5,6,7 5 20

Table3. o (¢,) /0 (g,) ratio for various damage cases. Note that 15 data sets are recorded at each input level for the undamaged case, and 5

data sets are measured at an individual input level for all damage cases(s[hé (¢.) ratios presented are the average values of all input
levels, i.e. the averages of 75, 25, 25, and 20 individual) /o (¢,) values measured under different input levels are presented for damage
cases 0, 1, 2 and 3, respectively.

DOF

Bumper location m1 m2 m3 m4 m5 m6 m7 m8

No bumper 1.0010 0.9965 1.0000 0.9992 1.0087 0.9988 1.0072 1.0009
Between ml-m2 1.0225 3.1101 1.2500 1.0628 1.1067 1.0425 1.0065 1.0751
Between m5-m6 0.9982 1.0345 0.9988 1.0478 2.6740 1.2564 1.2415 1.1558
Between m7-m8 1.0041 1.0106 1.0196 1.0575 1.1085 1.2572 2.4658 2.7610

be expected atthe nearestmeasurement point, m1. Howevef.aSummary and discussions

shown in table 3, no significant increasevite,)/o (¢,) was

observed at m1. Instead, thees,)/o (g,) value in the next This paper presents a procedure for damage detection and
adjacent measurement point, m2, was significantly incread@galization within a mechanical system solely based on

t03.1101 on average. Itis speculated that because m1is rigilll§ ime series analysis of vibration signals. The standard

connected to the shaker by a rod, the response at this poirf efgiation oftheresidual errors, which is the difference between
X 1l

masked by the direct influence of the random input. When thas actual measurement and the prediction derived from a

b laced at ms. th ue | combination of the AR and ARX models, is used as our
umper was piaced at mo, e, average,)/o(e.x) value in damage-sensitive feature to locate damage. The premise of this
mb5 increased to 2.6740, marking the largest increase am

i dpproach is that the residual error associated with the combined
all masses (see the fourth row of table 3). A similar result ISR 5nd ARX models developed from data obtained when the
observed when the bumper is placed at m7 (see the fifth rowggfycture is undamaged will significantly increase when this
table 3). Here a simple chart of thee,) /o (¢,) values with  model is applied to data obtained from a damaged system.
respect to measurement points seems to reveal the approxinaé®, a larger increase in the standard deviation of the residual
locations of nonlinear damage. error is expected to be observed near the actual damage regions.

conducted for all test data, and summarized in table 4. TH8@ normalization procedure is proposed to differentiate the
entries in table 4 show the rejection number of the nufffects of various environmental and/or operation conditions

hypothesisHy: o2(e,) = o(e,) out of all hypothesis tests. on the system dynamics from those caused by damage. This

. . .normalization procedure does not assume that measures of
For example, when the hypothesis test is conducted on 75 time : ; . .
environmental or operational conditions are available.

rs]eneshda.ta.sets. obtzmeq from the ;mdamagr]]ed caseoi th‘e ﬂ,erever, it does assume that the reference database
ypothesis is rejef:te twice a't m2 (? 75, as shown under Mgy ained when the structure is undamaged spans the various
column and the ‘no bumper’ row in table 4). In generalsnyironmental and operational conditions that might influence
the number of rejections is minimum when no bumper ige dynamics response of the system.
installed in the system, but a large number of rejections are The proposed damage detection and localization approach
observed for the subsequent damage cases. In particular,ithe several desirable attributes. First, a single-dimensional
number of rejections reaches its peak value near the actdata feature is used to both detect and locate damage. The use
location. of a single-dimensional data feature enhances the ability to
Table 5 reveals that the amplification of the input forcguant|Wthe statistical variability in this feature as is discussed

introduces amplitude-dependent nonlinearity, causing tifp Most texts on statistical pattern recognition, for example

increase ino (¢,)/o(c,). For example, when the bumper.see Bishop (1995). Also, the damage detection is conducted

is placed between ml and m2, thde,)/o (c,) value at in an unsupervised learning mode. That is, data from the

5 dually i . q ith the input | %'amaged structure is not needed to develop a classification
M2 gradually Increases in accordance wi € INPUt 18Vhodel. Instead, the proposed procedure can be thought of

However, the input amplification alone did not cause anys 5 form of outlier detection. The ability to perform the
noticeable increase in the standard deviation ratio without thgmage detection in an unsupervised learning mode is very
installation of a bumper That iS, the variation of the Input for%portant because data from damaged structures are typ|ca”y
level did not produce false-positive indication of damage kyot available for most real-world structures.

employing an appropriate normalization procedure proposed Finally, the approach presented herein is very attractive
in this paper. for the development of an automated continuous monitoring
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Table 4. Results of hypothesis testi(: o%(e,) = o2(¢,) andHy: o?(e,) = %(g,). This table shows the rejecting numbers of the null
hypothesis. For example, 2/75 means that the null hypothesis is rejected two times out of all tested 75 hypothesis tests. The Box—Andersen
test is conducted withh = 0.01.

DOF

Bumper location m1 m2 m3 m4 m5 m6 m7 m8

No bumper 0/75 2/75  0I75 2175  4/75 3/75 7175 2/75

Between ml-m2 2/25 25/25 25/25 13/25 20/25 12/25 5/25 15/25
Between m5-m6 0/25 11/25 2/25  9/25 25/25 25/25 22/25 21/25
Between m7-m8 0/20 6/20 3/20  8/20 15/20 18/20 20/20 20/20

Table5. Variation ofo (¢,) /o (&,) ratios according to input voltage levels. Note that five data sets are recorded at each input level. The
o (gy)/o(¢,) ratio presented is the average value of the five data sets. A bumper is placed between m1 and m2 during the acquisition of all
the time series used in this analysis.

DOF

Input force level m1l m2 m3 m4 m5 m6 m7 m8

1.0128 2.6354 1.2283 1.0357 1.1781 1.0624 1.0075 0.9996
1.0160 2.9535 1.1135 1.0583 1.0523 1.0026 0.9931 1.1250
1.0338 3.2642 1.1902 1.0266 1.0891 1.0752 0.9894 1.1173
1.0268 3.2185 1.2528 1.0824 1.0786 1.0474 1.0190 1.0637
1.0233 3.4791 14652 11110 1.1353 1.0252 1.0235 1.0702

~No o~ w

system because of its simplicity and because it requirBiee for his contribution to the experimental portion of this
minimal interaction with users. Furthermore, because damaugger.

diagnosis is conducted independently at an individual sensor

level, time synchron_ization among the multiple sensors _ﬁeferences

not necessary. This characteristic makes it an attractive

candidate for data interrogation with a wireless sensigjshgp C M 1995Neural Networks for Pattern Recognition
system.  However, it should be pointed out that the (Oxford: Oxford University Press) )
procedure developed has only been verified on relativefeX G E P andAndersa S L 1995 Permutation theory in the

simple laboratory test specimens. To verify that the proposed ggg\ﬁg?og_ rg?g?;g;ﬁegggngtr_ezsémy of departures from

method is truly robust, it will be necessary to examine mamypx G E P, Jenkirs G M and Reindes C 1994Time Series

time records corresponding to a wide range of operational and Analysis: Forecasting and Contr8rd edn (Englewood Cliffs,
environmental cases, a wide range of damaged and undamagedNJ: Prentice-Hall) _ _

structures, as well as different damage scenarios. Herein &€bling S W, Farrar C R, PrienM B and Shevitz D W 1998 A

review of damage identification methods that examine changes
one of the fundamental challenges for the further development ;| dynamic propertieShock Vibr. Dig30

and adaptation of any SHM scheme. The cost associated Witlirar C R, Duffey T A, Doeblig S W and Nix D A 2000 A

such proof-of-concept testing is extremely high, and the access statistical pattern recognition paradigm for vibration-based

to infrastructure that can be damaged in a realistic manner is structural health monitoringroc. 2nd Int. Workshop on

very limited. Structural Health Monitoring (Stanford, CA, September 8-10,
2000)pp 764-73
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